Reflections and Rotations on the Cartesian plane

Shannon and Ian Jacobs

If you read Transformations [1] in the mathematics index you will see how to modify equations in x and y to translate and scale figures on the Cartesian plane. In this article we see how to reflect lines and circles in mirror lines made by the x and y axes and how to rotate figures by 90 degrees.

Two lines are drawn on the plane.

Their equations are $\ldots \quad y=x+4$
\ldots and ...

$$
y=1 / 2 x+2
$$

Reflection in the y axis

The original lines (in pale red) are reflected in the y axis $(x=0)$ by replacing x with $-x$ in equations 1 and 2 .

$$
\begin{aligned}
& y=-x+4 \\
& y=-1 / 2 x+2
\end{aligned}
$$

Note that the x values of all points on any line are converted to $-x$, except for points on the line $x=0$, which is the mirror line.

Reflection in the x axis

The original lines in pale red are reflected in the x axis $(y=0)$ by replacing y with $-y$ in equations 1 and 2 .

$$
-y=x+4
$$

Modified equation... $y=-x-3$

$$
-y=1 / 2 x+2
$$

Modified equation ... $\quad y=-1 / 2 x-2$

Positive rotation about $(0,0)$ by 90°

The original lines in pale red are rotated by $+90^{\circ}$ (or -270°) by exchanging $x<=>y$ and replacing x with $-x$ in equations 1 and 2 .

$$
-x=y+4
$$

Modified equation ... $y=-x-4$

$$
-x=1 / 2 y+2
$$

Modified equation ... $\quad y=-2 x-4$

Positive rotation about $(0,0)$ by 180°

The original lines (in pale red) are rotated 180° by replacing \boldsymbol{x} with $-\boldsymbol{x}$ and \boldsymbol{y} with $\boldsymbol{- y}$ in equations 1 and 2 .

$$
-y=-x+4
$$

Modified equation ... $\quad y=x-4$

$$
-y=-1 / 2 x+2
$$

Modified equation ... $y=\frac{1}{2} x-2$

Positive rotation about $(0,0)$ by 270°

The original lines in pale red are rotated by $+270^{\circ}$ (or -90°) by exchanging $x<=>y$ and replacing y with $-y$ in equations 1 and 2 .

$$
x=-y+4
$$

Modified equation ... $\quad y=-x+4$

$$
x=-1 / 2 y+2
$$

Modified equation ... $\quad y=-2 x+4$

The following transformations have been used.
1 The transformation $x \rightarrow-x$ reflects lines in the y axis, which is the line $x=0$ which is left undisturbed.

2 The transformation $y \rightarrow-y$ reflects lines in the x axis, which is the line $y=0$ which is left undisturbed.

3 Both transformations: $x \rightarrow-x$ and $y \rightarrow-y$ rotates lines 180° about the origin $(0,0)$, which is the only point on the plane left undisturbed. A rotation of 180° is equivalent to refection in the y axis followed by reflection in the x axis.

4 Exchanging $x<=>y$ and transforming $x \rightarrow-x$ rotates lines about the origin by $+90^{\circ}$ (or -270°).

5 Exchanging $x<=>y$ and transforming $y \rightarrow-y$ rotates lines about the origin by -270° (or $+90^{\circ}$).

Note : the first three transformations are easily understood but the details of 4 and 5 may be difficult to remember. They can be recalled with a simple example, for instance by exchanging $x<=>y$ and rotating the line $y=x+1$, if they are needed and have been forgotten.

Two possible transformations remain.
6 Exchanging $x<=>y$... leaving both signs unchanged.
7 Exchanging $x<=>y \ldots$ and transforming $x \rightarrow-x$ and $y \rightarrow-y$.
Along with leaving x and y unchanged, which is a rotation of 360° about the origin, options 6 and 7 complete the eight possible permutations of x and y with positive or negative signs.

The effects of 6 and 7 are shown below.

Reflection in the line $\boldsymbol{y}=\boldsymbol{x}$

The original lines (in pale red) are reflected in the line $y=x$ by replacing y with x and x with y in equations 1 and 2 .

$$
x=y+4
$$

Modified equation ... $y=x-4$

$$
x=1 / 2 y+2
$$

Modified equation ... $y=2 x-4$

Reflection in the line $\boldsymbol{y}=\boldsymbol{- x}$

The original lines (in pale red) are reflected in the line $y=-x$ by replacing y with $-x$ and x with $-y$ in equations 1 and 2 .

$$
-x=-y+4
$$

Modified equation ... $\quad y=x+4$

$$
-x=-1 / 2 y+2
$$

Modified equation ... $\quad y=2 x+4$

